Rare Diseases Symptoms Automatic Extraction

Mechanisms of expression of pyruvate dehydrogenase deficiency caused by an E1alpha subunit mutation.

[pyruvate dehydrogenase deficiency]

To characterize the biochemical mechanisms of expression of the pyruvate dehydrogenase (PDH) E1alpha subunit exon 10 R302C missense mutation.Mutations in the X-linked E1alpha subunit gene are responsible for most cases of PDH deficiency, an important cause of neurodevelopmental defects and neurodegeneration with primary lactic acidemia. Although the disease shows extreme allelic heterogeneity, the R302C mutation has been defined in several unrelated cases.Cell lines expressing selectively either the mutant or wild-type E1alpha alleles against identical genetic backgrounds were generated from the fibroblasts of a female heterozygous for the R302C mutation. Enzyme activity, mRNA, polypeptide expression, and turnover were studied in each.The residual PDH activity was below measurable levels in the cell line (B5) expressing only the mutant allele and normal in the wild-type polypeptide expressing (A10) cell line, confirming that the R302C mutation alone is sufficient to cause a severe PDH deficiency. The mutant polypeptide was less stable than the wild-type polypeptide, but the steady-state level of the mutant E1alpha protein was reduced only two- to threefold.The primary mechanism of expression of the R302C mutation must be limitation of catalytic efficiency. We speculate that catalysis may be inhibited in the mutant polypeptide because conformational changes are induced near serine 300, a residue that is particularly important as a regulatory phosphorylation site in the wild-type polypeptide.