Rare Diseases Symptoms Automatic Extraction

Impaired glutamatergic synaptic transmission in the PKU brain.

[classical phenylketonuria]

This paper reviews recent results of our investigation of the mechanisms whereby hyperphenylalaninemia may cause brain dysfunction in classical phenylketonuria (PKU). Acute applications of L-Phe in rat and mouse hippocampal and cerebrocortical cultured neurons, at a range of concentrations found in PKU brain, significantly and reversibly depressed glutamatergic synaptic transmission by a combination of pre- and postsynaptic actions: (1) competition for the glycine-binding site of the N-methyl-D-aspartate (NMDA) receptors; (2) attenuation of neurotransmitter release; (3) competition for the glutamate-binding site of (RS)-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid and kainate (AMPA/kainate) receptors. Unlike L-Phe, its non-tyrosine metabolites, phenylacetic acid, phenylpyruvic acid, and phenyllactic acid, did not produce antiglutamatergic effects. L-Phe did not affect inhibitory gamma-aminobutyric (GABA)-ergic transmission. Consistent with this specific pattern of effects caused by L-Phe in neuronal cultures, the expression of NMDA receptor NR2A and AMPA receptor Glu1 and Glu2/3 subunits in brain of hyperphenylalaninemic PKU mice (Pah(enu2) strain) was significantly increased, whereas expression of the NMDA receptor NR2B subunit was decreased. There was no change in GABA alpha1 subunit expression. Considering the important role of glutamatergic synaptic transmission in normal brain development and function, these L-Phe-induced changes in glutamatergic synaptic transmission in PKU brain may be a critical element of the neurological symptoms of PKU.