Rare Diseases Symptoms Automatic Extraction

In vitro oxidation of pyrazinamide and allopurinol by rat liver aldehyde oxidase.

[]

Aldehyde oxidase was purified about 120-fold from rat liver cytosol by sequential column chromatography using diethylaminoethyl (DEAE) cellulose, Benzamidine-Sepharose 6B and gel filtration. The purified enzyme was shown as a single band with M(r) of 2.7 x 10(5) on polyacrylamide gel electrophoresis (PAGE) and M(r) of 1.35 x 10(5) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using this purified enzyme, in vitro conversion of allopurinol, pyrazinamide and pyrazinoic acid was investigated. Allopurinol and pyrazinamide were oxidized to oxypurinol and 5-hydroxy-pyrazinamide, respectively, while pyrazinoic acid, the microsomal deamidation product of pyrazinamide, was not oxidized to 5-hydroxypyrazinoic acid. The apparent Km value of the enzyme for pyrazinamide was 160 microM and that for allopurinol was 1.1 mM. On PAGE, allopurinol- or pyrazinamide-stained band was coincident with Coomassie Brilliant Blue R 250-stained band, respectively. These results suggest that aldehyde oxidase may play a role in the oxidation of allopurinol to oxypurinol and that of pyrazinamide to 5-hydroxypyrazinamide with xanthine dehydrogenase which can oxidize both allopurinol and pyrazinamide in vivo. The aldehyde oxidase may also play a major role in the oxidation of allopurinol and pyrazinamide in the subgroup of xanthinuria patients (xanthine oxidase deficiency) who can oxidize both allopurinol and pyrazinamide.