Evaluation of prenatal intra-amniotic LAMB3 gene delivery in a mouse model of Herlitz disease.
[junctional epidermolysis bullosa]
Prenatal gene therapy has been considered for Herlitz junctional epidermolysis bullosa (H-JEB), a lethal genodermatosis caused by the absence of any of the three subunits of laminin-5, resulting from birth in widespread blistering and erosions of skin and mucosae. To investigate this strategy in an animal model, adenovirus type 5- and adeno-associated virus (AAV) type 2-derived vectors carrying a beta-galactosidase reporter gene or LAMB3 cDNA encoding the beta3 chain of laminin-5 were generated, tested for stability in amniotic fluid and evaluated in vitro on murine H-JEB keratinocytes, and in vivo by prenatal injection into the amniotic cavities of laminin-5 beta3-deficient mice. The different vectors were administered individually or combined at maximum doses on day 14 post coitum. Adenoviral vectors infected preferentially the foetal epidermis, whereas AAV delivered the transgene mainly to mucous membranes of the airways and the upper digestive tract. The LAMB3 transgene was expressed in target epithelia of newborn laminin-5 beta3-deficient mice, and the transgenic beta3 chain was shown to assemble with its endogenous partner chains, resulting in detectable amounts of laminin-5 in the basement membranes of skin and mucosae and in a lower extent of tissue separation in the skin. However, only combined delivery of the two vector types led to a minor increase of the life span of H-JEB mice. Failure to rescue diseased animals was, at least in part, due to abandonment of any conspicuous pup by the heterozygous mother. This is the first study of a prenatal gene therapy approach to a heritable blistering disorder. Although our findings indicate that prenatal combined administration of adenoviral and adeno-associated LAMB3 vectors provides therapeutic benefit to H-JEB mice, this animal model appears unsuitable for long-term investigations of the therapeutic concept.