Sclerosing bone dysplasias: review and differentiation from other causes of osteosclerosis.
[erdheim-chester disease]
Sclerosing bone dysplasias are skeletal abnormalities of varying severity with a wide range of radiologic, clinical, and genetic features. Hereditary sclerosing bone dysplasias result from some disturbance in the pathways involved in osteoblast or osteoclast regulation, leading to abnormal accumulation of bone. Several genes have been discovered that, when disrupted, result in specific types of hereditary sclerosing bone dysplasia (osteopetrosis, pyknodysostosis, osteopoikilosis, osteopathia striata, progressive diaphyseal dysplasia, hereditary multiple diaphyseal sclerosis, hyperostosis corticalis generalisata), many of which exhibit similar pathologic mechanisms involving endochondral or intramembranous ossification and some of which share similar underlying genetic defects. Nonhereditary dysplasias include intramedullary osteosclerosis, melorheostosis, and overlap syndromes, whereas acquired syndromes with increased bone density, which may simulate sclerosing bone dysplasias, include osteoblastic metastases, Paget disease of bone, Erdheim-Chester disease, myelofibrosis, and sickle cell disease. Knowledge of the radiologic appearances, distribution, and associated clinical findings of hereditary and nonhereditary sclerosing bone dysplasias and acquired syndromes with increased bone density is crucial for accurate diagnosis.